Back 🔹 What is a Parquet file? 02 Jan, 2026

A Parquet file is a columnar storage file format widely used in Data Engineering, Data Science, and Big Data systems.


🔹 What is a Parquet file?

Apache Parquet is:

  • A binary

  • Column-oriented

  • Highly compressed

  • Schema-aware file format

Designed for fast analytics and efficient storage.


🔹 Why Parquet instead of CSV / Excel?

FeatureCSVExcelParquet
Storage typeRow-basedRow-basedColumn-based
Compression✅ Excellent
Read speedSlowSlow⚡ Very fast
Schema supportPartial✅ Full
Big data support✅ Designed for it
Cloud friendly

🔹 How Columnar Storage Helps

Instead of storing data row by row, Parquet stores data column by column.

Example:

Name | Age | Salary
A    | 30  | 50000
B    | 25  | 40000

Parquet stores:

Names   → A, B
Ages    → 30, 25
Salary  → 50000, 40000

✅ Faster queries
✅ Better compression
✅ Read only required columns


🔹 Where Parquet is Used

  • Apache Spark

  • Hadoop

  • AWS Athena

  • Google BigQuery

  • Databricks

  • Snowflake

  • Pandas / PyArrow

Perfect for:

  • Analytics

  • Machine Learning pipelines

  • Data lakes

  • ETL pipelines


🔹 How to Read & Write Parquet in Python

✅ Install

pip install pandas pyarrow fastparquet

✅ Write Parquet

import pandas as pd

df = pd.DataFrame({
    "name": ["A", "B"],
    "age": [30, 25],
    "salary": [50000, 40000]
})

df.to_parquet("data.parquet")

✅ Read Parquet

df = pd.read_parquet("data.parquet")
print(df)

🔹 Parquet vs ORC (Quick)

  • Parquet → More popular, cross-platform

  • ORC → Slightly faster in Hive ecosystems


🔹 When NOT to use Parquet

❌ Small files
❌ Frequently updated row-level data
❌ Simple human-readable storage


🔹 In Simple Words

Parquet = best format for storing large analytical data efficiently